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Abstract. A systematic investigation on the influence of an additional periodic modulation
potential which is weak, either electric or magnetic in nature, and spatially modulated along one
dimension, on the equilibrium thermodynamic properties of a two-dimensional electron gas in an
externally applied magnetic field is presented. The application of such an additional modulation
potential results in a broadening of the Landau level energy spectrum into bands whose widths
oscillate as a function of the externally applied magnetic field. Such oscillations are found to
reflect the commensurability of the two different length scales present in the system, namely
the cyclotron diameter at the Fermi level and the period of the modulation. We show that such
commensurability effects are also to be found in all thermodynamic quantities of the system.
They appear at low magnetic fields as an amplitude modulation of the well-known de Haas–van
Alphen-type oscillations, familiar from the homogeneous two-dimensional electron gas system
in an external magnetic field, which may or may not be resolved depending on temperature
and are only weakly dependent on temperature. Their origin lies in the oscillations occurring
in the bandwidths and they are consequently completely different in origin from the usual de
Haas–van Alphen-type oscillations. In particular, we show that commensurability oscillations
are to be found in the chemical potential, Helmholtz free energy, internal energy, electronic
entropy, electronic specific heat, orbital magnetization and orbital magnetic susceptibility of
such weakly modulated systems. We find that the resulting commensurability oscillations in
each thermodynamic function exhibit well-defined phase relations between the electric and
magnetic modulations except in the case of the orbital magnetization and the orbital magnetic
susceptibility. Explicit asymptotic expressions for the chemical potential, Helmholtz free energy
and orbital magnetization, in the quasi-classical limit of small magnetic fields and small but
finite temperatures, are also given.

1. Introduction

For the best part of a decade now, the influence of an additional one-dimensional periodic
spatial modulation potential, which is weak, on a two-dimensional electron gas (2DEG)
system in a uniform quantizing magnetic field (hereafter referred to as the two-dimensional
Landau system (2DLS)) has been extensively investigated. Initially such work focused on a
modulation potential which waselectric in nature [1–8] while more recently such attention
shifted to a modulation potential which was either solelymagneticin nature [9–15] or a
combination of the two types [16–18].

Modulated systems have been able to command such attention since the application of
an additionally applied modulation potential to the 2DLS lifts the degeneracy of the Landau
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level (LL) energy spectrum and broadens these levels into bands, in a non-uniform way,
whose widths oscillate with the externally applied magnetic field [8, 9] and therefore allow
for interesting commensurability effects. This non-uniform broadening of the levels, being
the pertinent feature of such modulated systems, initially found currency in the discovery of
new magnetic-field-dependent oscillations, at low fields, in the magnetoresistance due to an
electrostatic modulation potential [1, 7] and subsequently more recently due to a magnetic
modulation potential [13–15]. These additional oscillations reflect the commensurability of
two different length scales present in such a system, namely the cyclotron diameter at the
Fermi level

2Rc = 2
√

2πns`
2

(herens is the areal density of electrons while` = √h̄/(eB) is the magnetic length where
B is the strength of the uniform magnetic field ande is the electronic charge) which
represents the natural length scale of the two-dimensional Landau system, and the period
of the modulationa which is an additional length scale introduced into the system by the
modulation. Consequently, such oscillations are completely different in origin from those
of the usual de Haas–van Alphen-type (dHvA-type) oscillations, which occur at higher
magnetic fields and result from the formation of discrete energy levels due to the quantizing
magnetic field, and are well known [19, 20].

In this paper we show systematically that these new oscillations at low magnetic
fields, now known as ‘Weiss oscillations’ when seen in the magnetoresistance and Weiss-
type oscillations when seen in other properties of the system, also manifest themselves
in all thermodynamic quantities of the system. In particular, we show that Weiss-type
oscillations are to be found in the chemical potential, Helmholtz free energy, internal
energy, electronic entropy and electronic specific heat, and are particularly evident in the
orbital magnetization and the orbital magnetic susceptibility of such weakly modulated
systems. Clear comparisons between the two different types of modulation potential present
(i.e. eitherelectric or magnetic) are given and contact between the modulated 2DLSs and
that for the corresponding unmodulated system is made. Interestingly, we find that for
the Weiss-type oscillations obtained for electric and magnetic modulations, definite phase
relations exist between some of the thermodynamic functions while apparently not between
others. Furthermore, in the limit for small magnetic fields and low temperatures, asymptotic
expressions for the chemical potential, Helmholtz free energy and orbital magnetization are
given that show explicitly both the Weiss- and dHvA-type oscillations.

The work here not only extends upon a brief account of some of the equilibrium
thermodynamic properties (namely the chemical potential, orbital magnetization, orbital
magnetic susceptibility and electronic specific heat) touched on by Peeters and Vasilopoulos
[21] for a 2DLS subjected to an additionalelectric modulation potential, but, for the first
time presents the equilibrium thermodynamic properties of a 2DLS subjected to an additional
magneticmodulation potential which is weak. In the absence of a modulation potential, the
thermodynamic properties of the 2DLS have been calculated most completely, in a series of
papers in the mid-1980s, by Zawadzki. Initially he used a density of states (DOS) obtained
from the simplest model for a 2DEG in a perpendicular magnetic field with no broadening,
namely a DOS in the form of Dirac delta functions, to calculate the chemical potential and
orbital magnetization [22] and the magnetization and magnetic susceptibility (both orbital
and spin parts) asymptotically in the limit of very small magnetic fields [23]. Later on, the
work was extended to a DOS which contained broadening in the form of a sum of Gaussian
peaks in order to calculate the chemical potential, electronic entropy, electronic specific heat
and orbital magnetization [24, 25].
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2. The energy spectrum

We consider a 2DEG which is confined to the (x, y) plane and which is subjected to a
uniform quantizing magnetic fieldB = Bêz. In the Landau gauge the unperturbed single-
electron Hamiltonian for the 2DLS may be written as

H0 = − h̄2

2mb

d2

dx2
+ 1

2
mbω

2
c (x − x0)

2. (2.1)

Heremb is the effective band mass of the electron,ωc = eB/mb is the cyclotron frequency
while x0 = ky`2 is the centre coordinate withky corresponding to the wavenumber along
the y-direction. The normalized single-electron eigenfunctions corresponding to (2.1) are
given byψn,ky (x, y) = exp(ikyy)φn(x− x0)/

√
Ly . Here theφn(x− x0) are the well-known

linear harmonic oscillator eigenfunctions centred atx0, n corresponds to the LL index while
Ly is the normalization length in they-direction. The associated eigenvalues for the 2DLS
are given byεn,ky ≡ εn = (n+ 1/2)h̄ωc, which are degenerate in the quantum numberky ,
and form equally spaced LLs separated by an amount given by ¯hωc.

For the case of a spatial electric modulation potential,V (x), in the x-direction, the
single-electron Hamiltonian is given byH {e} = H0 + V (x). Here the letter ‘e’ is used to
denote the electric case. It will be modelled by a simple sinusoidal potential of the form
V (x) = Ve cos(Kx) such that the modulation potential is weak, i.e.Ve � ε0

F . HereVe is
the constant amplitude of the electric modulation potential,ε0

F = h̄2k2
F /(2mb) is the Fermi

energy at zero magnetic field and temperature whilekF =
√

2πns is the magnitude of the
Fermi wave vector in two dimensions. LastlyK = 2π/a. Choosing the Landau gauge,
the eigenvalues for this weakly perturbed system can therefore be found using first-order
perturbation theory. The result is [26]

E
{e}
n,ky
= (n+ 1/2)h̄ωc + Un cos(Kx0). (2.2)

HereUn = Ve exp(−X /2)Ln(X ), X = (K`)2/2 while Ln(x) is a Laguerre polynomial.
The pertinent feature of the addition of the modulation potential is that it lifts the

degeneracy of the LLs (in the quantum numberky) and broadens the formerly sharp LLs into
bands, so-called (electric) Landau bands. The bandwidths for the Landau bands (∼2|Un|)
are therefore dependent on the Landau band indexn, in an oscillatory manner, such that
the electric-modulation-induced broadening of the energy spectrum is non-uniform.

For the case of a spatial magnetic modulation we consider the 2DEG to be subjected
to the following magnetic field:B = (B + Bm(x))êz. HereB is the external uniform
magnetic field applied along thez-direction whileBm(x) is the one-dimensional spatial
magnetic modulation modulated along thex-direction. Again it will be modelled using a
simple sinusoidal potential of the formBm(x) = Bm cos(Kx) whereBm is the constant
amplitude of the magnetic modulation and is assumed to be weak, i.e.Bm � B. The
single-electron Hamiltonian for the magnetically modulated system is given byH {m} =
(p − eA)2/(2mb). Herep is the momentum operator andA the vector potential, while
the letter ‘m’ is used to denote the magnetic case. Again choosing the Landau gauge
(A = (0, xB + Bm/K sin(Kx), 0)) this Hamiltonian can be written asH {m} = H0 + HBm.
The second term is given by

HBm =
ωm

K
(−h̄ky + eBx) sin(Kx)+ mbω

2
m

4K2
(1− cos(2Kx)) (2.3)

where we have writtenωm = eBm/mb in analogy to the cyclotron frequencyωc. Here
the eigenvalues and eigenfunctions corresponding to this Hamiltonian cannot be solved
analytically. Instead, since we are interested only in a weak magnetic modulation we
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takeHBm to be a small perturbation of the 2DLS,H0. Taking theψn,ky (x, y) then as the
unperturbed eigenstates, one calculates from first-order perturbation theory the eigenvalues
for the weakly modulated magnetic system,H {m}, as [9]

E
{m}
n,ky
= (n+ 1/2)h̄ωc + Vn cos(Kx0) (2.4)

where only linear terms inBm have been retained. Here

Vn = h̄ωm/2[L(1)n (χ)+ L(1)n−1(χ)] exp(−χ/2)
(see reference 16 of [28] for further discussion) whileL(α)n (x) is an associated Laguerre
polynomial.

In an analogous fashion to the case for the electrically modulated system, the application
of a weak magnetic modulation similarly broadens the formerly sharp LLs into bands, so-
called (magnetic) Landau bands. In this case the bandwidth of the Landau bands (∼2|Vn|)
will once more have an oscillatory dependence on the Landau band indexn such that the
induced broadening of the energy spectrum is non-uniform.

An important feature of the newly acquired modulation-induced dispersion of these
Landau bands is that they can become flat at particular magnetic field values. Flat bands
for either modulation type requires that3{ς}n = 0 where, for the sake of brevity, we have
written

3{ς}n =
{
Un ς = e

Vn ς = m.

In the quasi-classical limit, where one considers small magnetic fields and has many Landau
bands occupied, one is able to write down an approximate condition for flat bands [1, 2, 9]:

2Rc = a(λς ∓ 1/4) with λς = 1, 2, . . .. (2.5)

Here the ‘−’ case corresponds toς = e while the ‘+’ case corresponds toς = m. From
this condition, the corresponding flat-band energies,ελς , may be estimated [8]:

ελς =
1

8

(
a

`

)2(
λς ∓ 1

4

)2

h̄ωc. (2.6)

Similarly, broad bands occur when the dispersion of these Landau bands is a maximum,
i.e. ∂3{ς}n /∂X = 0. Again, in the quasi-classical limit one is able to write down an
approximate condition for broad bands [1, 2, 9]:

2Rc = a(λς ± 1/4) with λς = 1, 2, . . .. (2.7)

It is well known that in the absence of a modulation the DOS for the 2DLS consists of
a series of equally spaced delta functions at energies equal toεn. The addition of a weak
spatially periodic modulation however modifies the former delta function like the DOS
by broadening the singularities at the energiesεn into bands. In the limit where disorder
broadening of the Landau bands is small compared to the modulation-induced broadening,
the DOSs are given by [27, 28]

D(ε) = A

π`2

∑
n,ky

δ[ε − εn,ky ] =
A

π2`2

∞∑
n=0

θ(|3{ς}n | − |ε − εn|)√
(3
{ς}
n )2− (ε − εn)2

(2.8)

whereθ(x) is a unit Heaviside step function. From equation (2.8) it can be seen that on
either side of the low- and high-energy edges of the broadened Landau bands there exist
one-dimensional van Hove singularities, which are of the inverse-square-root type, and are
responsible for forming a double-peak structure in the DOS.
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3. Equilibrium thermodynamic quantities

In the following we present detailed calculations for the electronic contribution to the
equilibrium thermodynamical properties for a 2DEG in a perpendicular magnetic field which
is subjected to additional spatially modulated periodic potentials in one dimension. The
cases of both a weak electrically modulated potential and a weak magnetically modulated
potential are treated. In particular, a detailed study of the chemical potential, internal energy,
Helmholtz free energy, electronic entropy, electronic specific heat, orbital magnetization
and orbital magnetic susceptibility are given. We employ the simplest model for a 2DEG
which is achievable in semiconductor systems. Namely, we consider free non-interacting
electrons, which lie in the (x, y) plane, within a single-electron approximation, and take the
conduction band to be parabolic and spherically symmetric. To this a quantizing magnetic
field is applied perpendicular to the plane of the 2DEG (i.e. along thez-direction) while an
additional spatial potential is periodically modulated along thex-direction. Spin degeneracy
of an electron is included but not the spin splitting since we are primarily interested in the
behaviour of the system pertaining to small magnetic fields.

3.1. Chemical potential, internal energy, Helmholtz free energy

The magnetic-field- (B-) and temperature- (T -) dependent chemical potentialµ ≡ µ(B, T )
of a system is determined through the normalization of the Fermi–Dirac distribution function,
i.e.

f (ε) =
[

exp

(
ε − µ
kBT

)
+ 1

]−1

wherekB is Boltzmann’s constant, by setting

N =
∫ ∞

0
D(ε)f (ε) dε. (3.1)

HereN gives the total number of electrons. From this equation it can be immediately seen
that changes in the DOS for the modulated system will be reflected in changes in the form
for the chemical potential over that of the unmodulated system. Upon substituting equation
(2.8) into (3.1) we obtain

N = A

π2`2

∞∑
n=0

∫ 1

−1

dx√
1− x2

[
χn exp(z{ς}n x)+ 1

]−1
. (3.2)

Here χn = exp(εn − µ)/(kBT ) while z{ς}n = |3{ς}n |/(kBT ). Equation (3.2) represents a
condensed form for writing the results as obtained from the two separate modulation types.
Note that such a practice will be followed throughout for all the thermodynamic expressions
which we are to present. For fixed electron concentration, the above integral equation gives
µ(B, T ) only implicitly and therefore, in general, must be solved for numerically. As a
particular limiting case of equation (3.2), if we consider zero temperature and assume no
overlap between the Landau bands (i.e. 2|3{ς}n | < h̄ωc), then the integral can be evaluated
in closed form. One can thus write explicitly for the chemical potential [28, 29]

µ(B, 0) = (nF + 1/2)h̄ωc + |3{ς}nF | sin

[
π

{
ε0
F

h̄ωc
− (nF + 1/2)

}]
. (3.3)

Here nF gives the band index at the highest occupied Landau band. The first term in
equation (3.3) gives the magnetic-field-dependent chemical potential, at zero temperature,
for the 2DLS in the absence of a modulation. In this case the chemical potential will be
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pinned to the last occupied LL except at integer filling factorsν = π`2ns . The second term
of equation (3.3) gives an additional correction to the chemical potential which results from
weakly modulated systems. One can see then thatµ(B, 0) is confined within the highest
occupied Landau band except again at integer filling factors.

The total internal energy,U , of the electrons is given by

U =
∫ ∞

0
εD(ε)f (ε) dε. (3.4)

Once more, upon substitution of equation (2.8) into equation (3.4), explicit evaluation for
the internal energy yields

U = A

π2`2

∞∑
n=0

∫ 1

−1

dx√
1− x2

(εn + x|3{ς}n |)[χn exp(z{ς}n x)+ 1]−1. (3.5)

This integral, which is dependent onµ(B, T ), again cannot in general be evaluated in closed
form for arbitrary temperatures but instead must be evaluated numerically onceµ(B, T ) is
known.

The Helmholtz free energy,F , directly tells one how to balance the conflicting demands
of a given system between minimum internal energy and maximum entropy [30]. It is a
very important computational function since it offers one of the easiest of methods for
finding other thermodynamical properties of the system (as derivatives ofF ) once one has
determined how to calculateF from the energy eigenvalues for the particular system. For
non-interacting fermions, the Helmholtz free energy of the whole assembly of electrons in
our system is given by [31]

F = µN − kBT
∫ ∞

0
D(ε) ln

[
1+ exp

(
µ− ε
kBT

)]
dε (3.6)

which for our weak spatially periodically modulated systems, in one dimension, becomes

F = µN − kBT A

π2`2

∞∑
n=0

∫ 1

−1

dx√
1− x2

ln
[
1+ χ−1

n exp(−z{ς}n x)
]
. (3.7)

From this equation for the Helmholtz free energy together with the expression determining
the chemical potential, i.e. equation (3.2), one is able to determine all equilibrium thermo-
dynamic properties for our weakly modulated systems as derivatives ofF .

3.2. Entropy and specific heat

In the case for the electronic contribution to the entropy,Sel, it is most expeditiously
obtained from the previous results calculated for the internal energy and the Helmholtz free
energy of our system, viaSel = (U − F)/T . The contribution to the electronic specific
heat,Cel, can now be immediately obtained by differentiatingSel with respect toT , since
Cel = T (∂Sel/∂T )A,N = −T (∂2F/∂T 2)A,N . Remembering that the chemical potential itself
is also temperature dependent, it is therefore now just a somewhat tedious task to evaluate
explicitly for Cel. After much algebraic manipulation we find

Cel = kB A

π2`2

[{
L2− (L1)

2

L0

}
+ 2

kBT

{
l1− L1`1

L0

}
+ 1

(kBT )2

{
 L1− (`1)

2

L0

}]
. (3.8)

Here

Lr =
∞∑
n=0

∫ 1

−1

dx√
1− x2

(
εn − µ
kBT

)r
B(1)n (x)



Thermodynamic properties of a 2D electron gas 5551

`r =
∞∑
n=0

|3{ς}n |
∫ 1

−1

x dx√
1− x2

B(r)n (x)

lr =
∞∑
n=0

|3{ς}n |
∫ 1

−1

x dx√
1− x2

(
εn − µ
kBT

)r
B(r)n (x)

 Lr =
∞∑
n=0

|3{ς}n |2
∫ 1

−1

x2 dx√
1− x2

B(r)n (x)

whereB(r)n (x) = [χn exp(z{ς}n x)]r/[χn exp(z{ς}n x)+ 1]r+1 has been introduced.
The first double grouping of terms by the curly brackets in equation (3.8) are just those

corresponding to the unmodulated case, in the limit of the modulation potential strength
going to zero, and are modified in form due to the presence of the weak modulation
potential. The second and third double groupings of terms by the curly brackets are new
modulation-induced terms. It should be noted that the second grouping of terms are linearly
dependent on the strength of the modulation amplitude while the third grouping of terms
are quadratically dependent. Thus both groupings of modulation-induced terms will tend to
zero in the limit of very weak modulation potential strengths.

3.3. Magnetization and magnetic susceptibility

The magnetic properties of a system are in the main due to the electrons present in the
system. In the presence of an external magnetic field two effects are important for the
magnetic properties of the system. Namely: (a) the electrons move in quantized orbits in
the magnetic field and (b) the spins of the electrons tend to align parallel to the direction
of the magnetic field. The orbital motion of the electrons gives rise to a contribution to
the orbital magnetization and the orbital magnetic susceptibility, while the alignment of the
electrons’ spin with the external magnetic field gives rise to an additional spin magnetization
and spin magnetic susceptibility. This additional spin part will not be considered here for
reasons previously already mentioned.

The electronic contribution to the orbital magnetization,M, of the system is given
by M = −(∂F/∂B)A,N . Observing that the chemical potential itself is dependent on the
magnetic field, then for the orbital magnetization of our weakly modulated system, by
differentiation of equation (3.7) with respect to the magnetic field, one obtains

M = kBT

B

A

π2`2

∞∑
n=0

∫ 1

−1

dx√
1− x2

{
ln
[
1+ χ−1

n exp(−z{ς}n x)
]

− εn

kBT

[
χn exp(z{ς}n x)+ 1

]−1
}

− kBT A

π2`2

∞∑
n=0

∂z
{ς}
n

∂B

∫ 1

−1

x dx√
1− x2

[
χn exp(z{ς}n x)+ 1

]−1
. (3.9)

Here

∂z
{ς}
n

∂B
=


± 1

kBT

X
2B
(Un + 2U(1)

n ) ς = e

± 1

kBT

[
Vn

Bm
+ X

2B
(Vn + 2V (1)n )

]
ς = m

where

U(β)
n = Ve exp(−X /2)L(β)n−β(X )
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Figure 1. The change in the chemical potential versus the magnetic field, at finite temperatures
(T = 2 K: full curve; T = 6 K: broken curve), due to an additional weak one-dimensional
spatially periodic modulation potential which is either magnetic (top portion) or electric (bottom
portion) in nature. Herea = 382 nm andns = 3.16×1015 m−2 are common to both modulated
systems whileVe = 1 meV for the electrically andBm = 0.04 T for the magnetically modulated
systems. The inset shows the small-magnetic-field behaviour of1µ (electric: full curve;
magnetic: broken curve) versusB at T = 6 K only.

and

V (β)n = h̄ωm exp(−X /2)[L(β+1)
n−β (X )− (1/2)L(β)n−β(X )].

The± sign arises upon differentiation of a quantity where one was only previously interested
in its modulus (i.e.|3{ς}n |), whence the positive case is for3{ς}n > 0 while the negative
case is for3{ς}n < 0. Again, the first two terms correspond to those found for the
unmodulated case but modified in form due to the presence of a weak modulation. The
third term represents the new modulation-induced term which disappears in the limit of the
unmodulated system. Interestingly, it will be noted that the magnetically modulated case
gives rise to an additional contribution to the orbital magnetization which is not present in
the electrically modulated case. It is due to the magnetic modulation potential itself having
a magnetic field dependence. The consequence of this additional term in the magnetically
modulated case will be fully described in the following sections.

Finally, we are interested in the electronic contribution to the orbital magnetic
susceptibility χ . It can be obtained directly from our previous results sinceχ =
(∂M/∂B)A,N = −(∂2F/∂B2)A,N . Its explicit form will not be given here since it is a
simple, but lengthy, extension of equation (3.9). It will be noted however that, as was the
case for the orbital magnetization of the magnetically modulated system, the orbital magnetic
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susceptibility too also contains an additional contribution in the magnetically modulated
case, as one now expects from performing a magnetic-field-dependent derivative.

4. Numerical results

A detailed numerical investigation of all of the thermodynamic properties, for both the
electrically and magnetically modulated systems, is presented. All of the calculations
that we have carried out are based on parameters typical for modulated 2DEG systems
in GaAs. Specifically, we takens = 3.16× 1015 m−2 anda = 382 nm. For the electrically
modulated system we takeVe = 1 meV while for the magnetically modulated system we
takeBm = 0.04 T. The effect of the modulation potential on any given quantity, say5

(=µ,U, F, . . .), will be given in terms of the difference between the modulated case and
that for the unmodulated system, i.e.15 = 5(Ve, Bm)−5(Ve = Bm = 0).

Figure 2. As figure 1, but now for the change in the internal energy versus the magnetic field.
The y-axis has been scaled usingU0 = Nε0

F /2 so that it is dimensionless.

In figures 1–7 we have plotted the changes in the various thermodynamic properties,
15, due to both a magnetic potential (top portion) and an electric potential (bottom portion)
at the respective temperatures ofT = 2 K (full curve) andT = 6 K (broken curve). In
the inset in each of these figures we contrast the small-magnetic-field behaviours of the two
modulation types (electric: full curve; magnetic: broken curve) atT = 6 K only. In figures
2–7, the15 have been appropriately scaled so that they appear dimensionless.

In figure 1 we have plotted the change in the chemical potential,1µ, versus the
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Figure 3. As figure 1, but now for the change in the Helmholtz free energy versus the magnetic
field. They-axis has been scaled usingF0 = Nε0

F /2 so that it is dimensionless.

magnetic field. It is clearly seen that the effect of a weak one-dimensional periodic spatial
modulation, is that it induces new oscillations, which appear for both modulation types,
at low magnetic fields, and are only weakly temperature dependent. These modulation-
induced oscillations have their origin in the commensurability of the two natural length
scales present in such systems. They are similar to the oscillations initially observed in the
magnetoresistance for such systems, at low fields, which have subsequently become known
as ‘Weiss’ oscillations. Thus, any general commensurability oscillations in quantities other
than the magnetoresistance will hereafter be referred to as Weiss-type oscillations. We
see that zeros in1µ occur for the flat-band conditions, as given by (2.5). Furthermore,
since the chemical potential oscillates about the unmodulated result, between flat bands
which correspond to one complete oscillation in the bandwidth, further zeros in1µ due
to this new Weiss-type oscillation occur. At higher temperatures such that the dHvA-type
oscillations are no longer resolved (i.e. theT = 6 K curves) one sees that, surprisingly, the
additional zeros occur about broad bands. At larger magnetic fields, both portions of figure 1
show dHvA-type oscillations. These are well known from the homogeneous 2DLS and are
strongly damped with increasing temperature when compared to the low-field oscillations.
The non-zero result at larger magnetic fields is also an indication that the effect of a weak
one-dimensional modulation potential is not merely confined to the regime of low magnetic
fields. The inset shows that the Weiss-type oscillations, atT = 6 K, for the two modulation
types, are out of phase with one another by 180◦. Note that the dHvA-type oscillations for
the two modulation types remain in phase with each other.
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Figure 4. As figure 1, but now for the change in the orbital magnetization versus the magnetic
field. They-axis has been scaled usingM0 = Nµ∗B so that it is dimensionless.

In figures 2 and 3 we plot the change in internal energy,1U , and the change in
the Helmholtz free energy,1F , respectively, versus the magnetic field. Both quantities
have been scaled usingU0 = F0 = Nε0

F /2, so that the correspondingy-axes appear
dimensionless. At small magnetic field strengths for either modulation type we clearly
see, from both figures, that the effect of an additional modulation potential leads to new
Weiss-type oscillations, with zeros occurring approximately for their respective flat-band
conditions, and which are only weakly temperature dependent. Note that such oscillations
between the two modulation types are 90◦ out of phase with one another. At higher magnetic
fields the familiar dHvA-type oscillations occur and are strongly temperature dependent.

In figure 4 the change in the orbital magnetization,1M, versus the magnetic field is
calculated according to equation (3.9). The change in the orbital magnetization has been
scaled usingM0 = Nµ∗B , whereµ∗B = eh̄/(2mb) is the effective Bohr magneton, in such
a way that it once more appears dimensionless. Again, at low magnetic fields new Weiss-
type oscillations are observed with zeros occurring for the respective flat-band conditions.
Since the orbital magnetization also oscillates about the zero position, additional zeros in
the orbital magnetization due to the Weiss-type oscillations result. These are most clearly
seen from theT = 6 K curves when the dHvA-type oscillations have been all but washed
away. For the electric case these additional zeros occur about magnetic field values given by
the broad-band condition and are thus in phase with those for1µ, while for the magnetic
case such zeros occur away from the magnetic field values given by its corresponding
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Figure 5. As figure 1, but now for the change in the orbital magnetic susceptibility versus the
magnetic field. They-axis has been scaled usingχ0 = Nµ∗B/B so that it is dimensionless.

broad-band condition. This can be attributed to the additional magnetic-field-dependent
term appearing in the orbital magnetization due to the magnetic field dependence of the
modulation potential itself. As a result, there is no clearly defined phase difference in
the Weiss-type oscillations between the two modulation types. This is clearly evident in
the inset to figure 4. Again, these new Weiss-type oscillations are only weakly dependent
on temperature and, at larger magnetic fields, dHvA-type oscillations for both modulation
types are clearly seen. Similar results are obtained in figure 5 for the change in the orbital
magnetic susceptibility,1χ , versus the magnetic field to those for the orbital magnetization.
However, here the Weiss-type oscillations for the electric modulation have been shifted by
90◦ relative to the Weiss-type oscillations as found in both1M and1µ. For the magnetic
modulation, as was the case with the orbital magnetization, no clearly discernible phase shift
between the Weiss-type oscillations results due to the orbital magnetic susceptibility again
containing additional magnetic-field-dependent terms since the modulation potential is itself
dependent on the magnetic field. Both curves have been scaled by a factor ofχ0 = Nµ∗B/B
so that they-axis appears dimensionless.

In figure 6 we have plotted the change in the electronic entropy,1Sel, versus the
magnetic field. The scaling factor employed here wasS0 = kBN . The appearance of
Weiss-type oscillations at low magnetic fields is again predicted but these are shifted in
phase by a factor of 90◦ relative to the Weiss-type oscillations appearing in1µ. They are
again only weakly dependent on temperature. Once more a 180◦ phase difference exists
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Figure 6. As figure 1, but now for the change in the electronic entropy versus the magnetic
field. They-axis has been scaled usingS0 = NkB so that it is dimensionless.

between the two modulation types for such commensurability oscillations.
For the change in the electronic contribution to the specific heat,1Cel, versus the

magnetic field, as obtained from equation (3.8) (see figure 7) similar results to those for
1Sel are found. These oscillations are however 180◦ out of phase with the corresponding
ones found in1Sel and 90◦ out of phase with those found in1µ. Again the curves have
been scaled according to(Cel)0 = kBN . In passing it will be noted that the additional
Weiss-type oscillations appearing in both1Sel and1Cel at low magnetic fields are not
large effects. Their respective amplitudes of oscillation are relatively small when compared
to the amplitude of the dHvA-type oscillations, particularly at lower temperatures.

The electronic contribution to the specific heat,Cel, for the weakly modulated systems at
large magnetic fields, differs significantly from that for the unmodulated 2DLS. In figure 8,
Cel versusB is shown for a one-dimensional weakly modulated electric potential (full curve)
and for the unmodulated system (broken curve) atT = 2 K. For the modulated system, at
high magnetic fields an additional non-zero contribution toCel results (seen as broadened
peaks). ThusCel for the modulated system is seen to consist of two contributions, whereas
Cel for the unmodulated system consists only of a single contribution. At high magnetic
fields, such that ¯hωc � kBT , the modulation-induced broadening of the LLs into bands
lifts the ky-degeneracy of the LL eigenspectrum and therefore allows for intra-Landau-band
thermal excitations to contribute toCel. Due to theky-degeneracy of the LL eigenspectrum
in the unmodulated system, no such additional contribution toCel can arise in this case. Such
corresponding high-magnetic-field behaviour is also found in the weakly one-dimensional
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Figure 7. As figure 1, but now for the change in the electronic specific heat versus the magnetic
field. They-axis has been scaled using(Cel)0 = NkB so that it is dimensionless.

magnetically modulated system. At weaker magnetic fields, for both the modulated and the
unmodulated systems, the inter-level thermal excitations begin to contribute toCel, and they
completely dominate in the limit of very low magnetic fields. These contributions are seen
as the sharp spikes appearing in figure 8.

Interestingly, the situation for the modulated system is similar to that for an unmodulated
system if one considers a phenomenological broadening of the LLs. The effect of Gaussian
broadening of the LLs was considered by Zawadzki and Lassnig [24, 25]. Such a situation
was found to exhibit similar intra-level contributions to ourCel, at higher magnetic fields.

Table 1. The phase differences of the Weiss-type oscillations as found in the thermodynamic
quantities relative to those of the chemical potential.

Phase shift

Quantity Electric Magnetic

S 90◦ 90◦
Cel 90◦ 90◦
M 0◦ —
χ 90◦ —
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Figure 8. The normalized electronic specific heat versus the magnetic field atT = 2 K. The
full curve is for the weakly modulated electric system (Ve = 1 meV, a = 382 nm) while the
broken curve corresponds to the unmodulated two-dimensional Landau system. In both cases
ns = 3.16× 1015 m−2.

Table 2. The phase differences of the Weiss-type oscillations relative to those found between
two specific quantities.

Phase shift

Quantity Relative to Electric Magnetic

U F 0◦ 0◦
U Bandwidth 0◦ 0◦
F Bandwidth 0◦ 0◦
χ M 90◦ —
Cel S 180◦ 180◦

Table 3. The phase shifts in the Weiss-type oscillations occurring in the thermodynamic functions
between the electric and magnetic modulations.

Phase shift between the
Quantity two modulation types

µ 180◦
U 90◦
F 90◦
Sel 180◦
Cel 180◦
M Not discernible
χ Not discernible

To summarize, in table 1 we present the phase difference of the Weiss-type oscillations
relative to the chemical potentialµ while in table 2 the phase difference of the Weiss-type
oscillations relative to another given quantity are presented. In table 3 the phase shifts in
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the Weiss-type oscillations occurring in the thermodynamic functions between the electric
and magnetic modulations are given.

5. Asymptotic results

In this section we derive asymptotic expressions for the Helmholtz free energy, chemical
potential and orbital magnetization, which are valid in the quasi-classical limit, and
can account for the Weiss-type oscillations together with the more familiar dHvA-type
oscillations which appear in these quantities.

To find the asymptotic expression for the Helmholtz free energy in this limit we begin
with equation (3.6). This time however we shall employ an asymptotic result for the DOS
which is valid in the limit of small magnetic fields when many Landau bands are occupied.
In the case of a weak electric modulation, an approximate analytical formula for the DOS
in the quasi-classical limit has been given by Zhang and Gerhardts [8]. Following their
procedure verbatim for the case of a weak magnetic modulation, we find that we are able
to write the DOS, to leading order in either modulation strength, as

D(ε) ≈ A

π`2

1

h̄ωc

{
1− 2 cos

(
2πε

h̄ωc

)[
1−�{ς}(ε) cos2
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2π`
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√
2ε
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4

)]}
(5.1)
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For definiteness we will only outline the calculation corresponding to the case for an
electric modulation. For the case of a magnetic modulation, the calculation proceeds in an
exactly analogous manner. Substitution of equation (5.1), for the asymptotic limit DOS,
into equation (3.6) gives

F ≈ µN − A
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. (5.2)

The first of these integrals gives the contribution for the unmodulated 2DLS to the Helmholtz
free energy in the quasi-classical limit. One will note that in this case, for zero broadening
of the LLs, the approximate DOS at small magnetic fields is given by the well-known
resultD(ε) ≈ mbA/(πh̄2){1− cos[2πε/(h̄ωc)]}, and is clearly evident in this integral. The
second of these integrals gives the correction to the Helmholtz free energy for the weakly
modulated system. Both integrals, under the assumption that 2kBT � µ, can be evaluated
analytically at finite temperatures. The final result is (see appendix A)

F = µN + F0+ Fmod. (5.3)
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Here

F0 ≈ − A

π`2
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(5.4)

and gives the asymptotic contribution to the Helmholtz free energy for the unmodulated
2DLS. It gives a pure oscillatory dHvA-type contribution toF0 due to the magnetic-
field-dependent cosine term.Fmod gives the asymptotic contribution to the Helmholtz
free energy in the presence of the additional electric modulation potential. In terms of
the difference between that of the modulated case and that of the unmodulated case,
i.e.1F = F(Ve)− F(Ve = 0) = Fmod, one has
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Here Tc = h̄ωc/(2π2kB) is known as the critical temperature. As is well known, it
determines the amplitude of the dHvA-type oscillations at small magnetic fields (via the
prefactor(T /Tc)/ sinh(T /Tc)) which, as expected, are exponentially damped as a function
of the temperature. The critical temperature thus defines the temperature above which
the dHvA-type oscillations will be washed away. Equation (5.5) can also account for the
Weiss-type oscillations. At low magnetic fields, the cosine-squared term gives rise to new
oscillations, that is Weiss-type oscillations, occurring in1F as an amplitude modulation
of the dHvA-type oscillations such that zeros result when the electric flat-band condition is
satisfied. However, no temperature dependence for these oscillations is obtained from our
asymptotic expression. All information regarding the temperature dependence of the Weiss-
type oscillations is lost since, by assuming 2kBT � µ, one considers only the leading-order
terms in 2kBT /µ (see appendix A). From our numerical results however, it is to be expected
that by retaining terms of higher order in 2kBT /µ would produce only a weak temperature
dependence in the Weiss-type oscillations.

For the magnetic case, a similar calculation to that given above leads to essentially
the same result as equation (5.5); however, in this case the prefactor appearing outside the
square brackets must be replaced. In general then, for both cases, one is able to write
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and where the ‘−’ case corresponds to the electric case while the ‘+’ case corresponds to
the magnetic case. Clearly then in this limit, the phase shift in the Weiss-type oscillations
between the two modulation types is 90◦. The chemical potential in the asymptotic limit
can now be readily found from equation (5.3) since(∂F/∂µ)N,A = 0.
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The orbital magnetization in this asymptotic limit is found upon differentiating equation
(5.3) (or its magnetically equivalent case) with respect to the magnetic field. The final result
is M = M0+Mmod. Here
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is the asymptotic orbital magnetization for the 2DLS and gives only a pure dHvA-type
contribution (from the magnetic-field-dependent sine and cosine terms) while
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gives the asymptotic contribution to the orbital magnetization in the presence of an additional
modulation potential and represents an interference between the Weiss- and dHvA-type
oscillations. For the electric case we choose the ‘−’ case for whichM {m}mod = 0 while for
the magnetic case we choose the corresponding ‘+’ case for which the additional magnetic-
modulation-induced term is given by
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From such an expression for the orbital magnetization, immediately it will be seen that one
set of zeros in1M = M(Ve, Bm)−M(Ve = Bm = 0) = Mmod, due to the additional Weiss-
type oscillations, occur for the respective flat-band conditions. What is not immediately
clear however is where the addition zeros in1M occur, for either modulation type, due to
such oscillations.

If in equation (5.6) one took the limit where the thermal broadening (∼kBT ) is much
larger than ¯hωc but less than the energetic spacing between adjacent flat bands, one would
find

1F ∼ ϒ {ς} cos2
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4

)
. (5.10)

This asymptotic expression for the change in the Helmholtz free energy describes the
resulting Weiss-type oscillations which are independent of temperature. For this limit then,
for the case of an electric modulation, by assuming that only the most rapidly varying
factor in the magnetic field needs to be differentiated, we find for the change in the orbital
magnetization
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It is immediately obvious that the additional set of zeros occur at electric broad bands.
For the magnetic modulation, when calculating the orbital magnetization for this case, one
must consider the most rapidly varying factors in the magnetic field, both for the external
magnetic fieldB and the modulation-dependent magnetic fieldBm. When this is done we
obtain
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The additional set of zeros are determined by setting the square-bracket term equal to zero.
When this is done the following transcendental equation results:θ = − cot(θ + π/4)B/Bm

where θ = 2π`/a
√

2µ/(h̄ωc). The phase shift occurring in the Weiss-type oscillations
may be understood by plotting the following pair of equations;y = θ andy = − cot(θ +
π/4)B/Bm. The points of intersection between the two curves gives the additional roots.
One finds that as the parameterθ (which is inversely proportional to the strength of the
magnetic field) increases, the additional roots of1M {m} tend towards the asymptotes of the
cotangent function which turn out to be those given by the magnetic broad-band condition.
On the other hand, those roots which occur at small values forθ (corresponding to larger
magnetic field values) are considerably removed from the asymptotes of the cotangent
function and hence those values predicated from the magnetic broad-band condition. This
accounts for the observed phase shift in the Weiss-type oscillations under an additional
magnetic modulation compared to those oscillations found under an electric modulation,
and is caused by the magnetic modulation potential itself giving an additional contribution
to the orbital magnetization.

In the spirit of those approximations leading to equation (5.11), for the case of an electric
modulation one is able to find a simple expression for the change in the orbital magnetic
susceptibility:

1χ {e} ∼ −8π4
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The resulting Weiss-type oscillations (and hence its zeros) are therefore shifted in phase by
a factor of 90◦ compared to those of the orbital magnetization.

From our asymptotic expression for the Helmholtz free energy we cannot find a similar
asymptotic expression for the entropy which can account for the Weiss-type oscillations
satisfactorily, since our asymptotic expression given by equation (5.3) gives no temperature
dependence for such oscillations; a temperature derivative will therefore result in zero
contribution to the Weiss-type oscillations.

Qualitatively it is to be expected that the Weiss-type oscillations can persist to higher
temperatures and hence that the dHvA-type oscillations can no longer be resolved since,
as pointed out by many authors [21, 27, 32, 33], at finite temperatures the thermal
broadening (∼kBT ) must remain smaller than the relevant energy scale responsible for
each of the oscillation types. The dHvA-type oscillations occur due to the discreteness of
the modulation-induced Landau bands. Such oscillations are therefore resolved provided
that the thermal broadening remains less than the energy spacing between adjacent Landau
bands, which is of the order of ¯hωc. Weiss-type oscillations on the other hand are due to
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the size of the cyclotron diameter at the Fermi level versus the period of the modulation.
Here then the relevant energy scale is the distance between adjacent flat bands. It can be
estimated, from the flat-band energiesελς (see (2.6)), as1ελς /(h̄ωc) ∼ akF /2. For typical
parametersa ≈ 350 nm andns ≈ 3.1× 1015 m−2 one hasakF /2 ≈ 25. Such estimates
(for either modulation type) are considerably larger than the Landau band separation energy
of h̄ωc and this is why the Weiss-type oscillations survive to much higher temperatures
compared with the dHvA-type oscillations.

6. Conclusion

We have presented a systematic investigation of the equilibrium thermodynamical properties,
at finite temperatures, for a 2DLS under the influence of a weak spatially periodic potential
which is modulated in one dimension. Expressions for both a weak electric and a weak
magnetic modulation have been explicitly given for the case of a simple cosine potential.
Such modulation potentials lead to a broadening of the two-dimensional Landau energy
spectrum into bands whose widths oscillate as a function of the externally applied magnetic
field. This oscillation in the Landau bandwidths reflects the commensurability of the
natural length scales present in such systems, namely the magnetic length` and the
modulation perioda. We have shown that for such modulated systems, new modulation-
induced commensurability oscillations, at low magnetic fields, manifest themselves in all
such thermodynamic quantities of the system. In particular, we have shown that such
oscillations are to be found in the chemical potential, Helmholtz free energy, internal energy,
electronic entropy, electronic specific heat, orbital magnetization and orbital magnetic
susceptibility of such weakly modulated systems. They are similar in nature to the Weiss
oscillations which are found in the magnetoresistance. Subsequently, we have shown
that a whole class of Weiss-type oscillations are to be expected in the thermodynamic
quantities of such weakly modulated systems. Such Weiss-type oscillations, which are only
weakly temperature dependent, occur in the thermodynamic quantities at low magnetic
fields as an amplitude modulation of the well-known dHvA-type oscillations, familiar
from the homogeneous 2DLS which may or may not be resolved depending on the
temperature. Characteristics pertaining to these new commensurability oscillations in the
thermodynamic quantities have been summarized in tables 1 and 2. Interestingly, we
find that well-defined phase relations exist between the two modulation types for the
commensurability oscillations occurring in most of the thermodynamic functions except the
orbital magnetization and the orbital magnetic susceptibility. These results are summarized
in table 3. Finally, we have given asymptotic expressions for the chemical potential,
Helmholtz free energy and orbital magnetization in the quasi-classical limit of small
magnetic fields and small but finite temperatures, which show explicitly both the Weiss-
and dHvA-type oscillations.
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Appendix A

Evaluation of the integrals appearing in equation (5.2) reduces to the common problem of
the evaluation of an integral of the type

I(α, β; u0) =
∫ ∞
−u0

du cos(αu+ β) ln[1+ e−2u] u0� 1. (A.1)

This integral can be performed analytically in the limit of largeu0. Integration by parts
twice followed by replacement of the lower limit of integration by−∞ (sinceu0 � 1)
leads to

I(α, β; u0) ≈ −2u0

α
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(A.2)

which since [34]∫ ∞
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sinh(πα)
(A.3)

gives

I(α, β; u0) ≈ −2u0

α
sin(β − αu0)+ 2
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cos(β − αu0)− π cos(β)

α sinh(πα)
. (A.4)

The first integral,I1, appearing in equation (5.2) may, upon the change of variable
2u = (ε − µ)/(kBT ), be written as

I1 =
∫ ∞
−µ/(kBT )

du ln[1+ e−u] + 4kBT I
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whence equation (5.4) immediately follows.
The evaluation of the second integral,I2, appearing in equation (5.2) is somewhat

more involved. By writing the two separate cosine terms as one, using basic trigonometric
identities, employing the change of variable 2u = (ε − µ)/(kBT ) and retaining only those
terms to leading order in 2kBT /µ, since 2kBT � µ, one has
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(A.6)

from which, after careful algebraic manipulation, equation (5.5) follows.
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